Exposure of human cartilage tissue to low concentrations of blood for a short period of time leads to prolonged cartilage damage: an in vitro study.
نویسندگان
چکیده
OBJECTIVE Joint bleeding, or hemarthrosis, leads in time to severe joint damage. This study was carried out to test the in vitro thresholds of exposure time and concentration that lead to irreversible joint damage, to add to the discussion on the usefulness of aspiration of the joint after a hemorrhage. METHODS Explants of healthy human articular cartilage tissue were cultured in the presence or absence of 50% (volume/volume) blood for 1, 2, 3, or 4 days or in the presence of 0%, 5%, 10%, 20%, 30%, or 50% (v/v) blood for 4 days, followed by a 12-day period of recovery after withdrawal of blood. The effect of blood exposure on cartilage was determined by measuring the rate of proteoglycan synthesis as well as the release and content of cartilage matrix proteoglycans and the activity of matrix metalloproteinases. RESULTS Exposure of cartilage to 50% (v/v) blood led to adverse changes that were largely independent of the exposure time. The adverse effects persisted after an initial exposure of up to or exceeding 2 days. Exposure of cartilage to increasing concentrations of blood for 4 days led to concentration-dependent adverse changes. These effects persisted when the concentration equaled or exceeded 10% (v/v) blood. Moreover, after 2 days of exposure to a blood load of 10% (v/v), the adverse effects on cartilage were not reversible. CONCLUSION A 2-day exposure of cartilage in vitro to 10% (v/v) blood leads to prolonged impairment of joint cartilage. This suggests that aspiration of blood from the joint within 2 days after hemarthrosis should be considered to prevent blood-induced joint damage in the long term.
منابع مشابه
In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration
Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...
متن کاملThe comparison of the effect of an aerobic training period and ozone therapy on gene expression of Beclin-1, AMPK and mTOR of articular cartilage tissue in rats model of osteoarthritis
Introduction The aim of the research was to investigate the effect of 8 weeks’ exercise training and ozone therapy on articular cartilage tissue mRNA Beclin-1, AMPK, and mTOR gene expression in rat’s model of osteoarthritis (OA). Materials and Methods In this experimental study, 40 adult male rats 210±10 gr were randomly divided into 5 groups: 1) control (CN), 2) OA, 3) OA + ozone, 4) OA + ex...
متن کاملThe immunomodulatory effects of shark cartilage on the mouse and human immune system
Background: Sharks get cancer rarely. A major difference between these animals and other species is that sharks have a great amount of cartilaginous tissue. Immunomodulatory effects of the cartilage of some species (cow) have been proved. Because the immune system has a major role in the defense of the body against cancer, we studied the effects of shark cartilage on the mouse and human immune...
متن کاملDegradation of Extracellular Matrix Molecules in Interleukin-1 Alpha Treated Bovine Nasal Cartilage
Background: This work aimed to show and compare the degradation time of some of cartilage extracellular matrix components using an in vitro model for cartilage degradation induced by interleukin-1 alpha. It is known that elucidation of molecular events under Interleukin-1 alpha induction of bovine nasal cartilage could obtain useful data to understand more about involving mechanisms for tissue ...
متن کاملHigh Quality of Infant Chondrocytes in Comparison with Adult Chondrocytes for Cartilage Tissue Engineering
BACKGROUND Tissue engineering is used for the treatment of many diseases, and the ideal cell source for cartilage tissue engineering is chondrocytes. The main limitation of chondrocyte is the low number of cells in cartilage tissue engineering. This study investigated a suitable cell source with high proliferation rate to obtain a large number of chondrocytes. METHODS Adult cartilage t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis and rheumatism
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2007